

Fermilab
Summer
internship
2012

Calibration of a Probe for Strain Sensitivity Studies of Critical Current Density in Superconducting Wires

Alessandro Cingoli

Supervisor: Emanuela Barzi

#### The Probe (1)

- The probe is made of two concentric OFHC tube copper tubes which act as current (2000A) and torque carriers (max 60 Nm);
- The top of the spring is attached to the inner tube and can rotate, the bottom is fixed with the outer tube at the bottom end;
- Torque is generated through a manual worm gear and transferred to the sample through the spring.
- It uses a bending spring technique, more complex than the monotonic axial loading but it allows to test longer sample, up to ~800 mm;
- It also makes possible to transfer both tensile and compressive stress state, the latter is important dealing with thermal load.

(1) Emanuela Barzi et al 'Design of a Probe for Strain Sensitivity Studies of Critical Current Densities in Superconducting Wires'



### Walter Spring

➤ The spring is the core part of the probe. It is made of Ti-6Al-4V alloy which guarantee higher elasticity limit, ~1.3% but poor solderability.

The cross section is T-shaped with a groove to place the specimen.







The geometry is optimized in order to:

- minimize the strain ratio between the inner and outer surface of the spring
- Reduce the strain gradient across the wire or tape to be measured.

#### Calibration

•We have to verify the computed (analytically and with FEA) relation between the imposed angular displacement θ on the spring with the strain ε obtained with a proper calibration using strain gauges

$$\varepsilon = \varepsilon(\theta)$$

### Objectives

#### We want to check:

- Linearity
- O Hysteresis
- Reproducibility
- Different prestrains with different installation configuration
- Thermal expansion coefficient match between spring and specimen
- Strain uniformity along the spring

The <u>aim</u> is to positively verify these conditions in order to validate the model and not to have installed the strain gauge during operative use of the probe.

## Analytical Model

#### STRAIN

The spring is treated as a curved beam, each turn represents a curved section, we get the circumferential strain:

$$\varepsilon_{\theta\theta} = K(1 - r_n/r)$$

where K is a factor that depends on the *applied angular displacement*, the *number of turns* of the spring and the *pitch angle*, and  $r_n$  is the radial position of the neutral axis.

#### **O** GEOMETRY

We exploited this scheme representing an element of the spring. We compute the variation in:

- > Mean diameter
- > Angular distortion of turns
- ➤ Total vertical length



#### Finite element model

O To verify the analytical solution and to simulate the spring behavior at cryogenic temperatures, a finite element model was developed (1)

It shows a sinusoidal behavior which differs from analytical solution.

(1) Nandhini et al 'Design of a Probe for Strain Sensitivity Studies of Critical Current Densities in Superconducting Wires'



## Measuring strain: STRAIN GAUGE

There are several aspects that we need to take into account:

- Thermal expansion: there are self temperature compensated SG, we have to check if they match with our material or we have to use dummy gauge;
- Numbers: we need to define how many transducers are necessary to obtain a significant representation;
- O The strain component we want to catch and so the direction of installation;
- Wheatstone bridge configuration.



### SG Set-up

We place 4 strain gauges on the spring.

#### 3 Active SG:

- located on the 2 central turns, 180 degrees apart
- quarter Wheatstone bridge
- oriented through the longitudinal direction to catch the *helical strain* (circumferential)

#### **Dummy gauge**

- laid, not glued, on the upper part of the spring
- half bridge configuration.



#### Operation

- We act on worm-gear to transfer the strain through the inner tube to the spring.
- We go from 0 to +70 degrees inducing a tensile strain state.
- O Then we do the same but from 0 to -70 degrees causing a compression strain state on the spring.
- We use step increase of 5 degrees in order to have a proper resolution on the angular displacement scale.
- O Devices numbering: SG2 is in between SG1 and SG3, following the helical path from the bottom of the spring.
- SG3 is the one connected with dummy

# Results Strain –Tension



# Results Strain –Compression



## Strain uniformity

FEA predicts sinusoidal behavior of strain along the helical path.



|                                      |                     | <b>2</b> po          |                       |
|--------------------------------------|---------------------|----------------------|-----------------------|
|                                      | 10 degrees          | 20 degrees           | 70 degrees            |
| Expected<br>Amplitude                | $1\cdot 10^{-5}$    | $2 \cdot 10^{-3}$    | $2.5 \cdot 10^{-2}$   |
| Difference<br>between SG2<br>and SG1 | $0.7 \cdot 10^{-4}$ | $1.65 \cdot 10^{-3}$ | $1.52 \cdot 10^{-2}$  |
| Difference<br>between SG3<br>and SG1 | $1.2 \cdot 10^{-4}$ | $2.23 \cdot 10^{-3}$ | $1.167 \cdot 10^{-2}$ |

Strain gauge data

## Error Analysis

The different sources of errors are:

- O Hysteresis
- Zero-offset: due to impedance difference
- Cables impedance
- Installation effect
- Uncertainties on gauge factor and strain gauge resistance
- EMI induced errors: due to amplification

#### Next Step

- FEA on transverse strain and thermal load
- Use different spring material
- Testing at 4.2 K